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Study of heat and mass transport in a temperature 
dependent viscosity fluid layer under temperature 
modulation 
 

B.S. Bhadauria1 and Palle Kiran2 

Abstract—In this paper, we study the thermosolutal convection in a horizontal temperature dependant viscous fluid layer. 
The considered temperature profile consists of two parts: a steady part and a time-dependent periodic part that oscillates with 
time. A weak nonlinear stability analysis has been performed by using power series expansion in terms of the amplitude of 
temperature modulation, which is assumed to be small. The Nusselt and Sherwood numbers have been obtained in terms of 
the amplitude of convection which is governed by the non autonomous Ginzburg-Landau equation derived for the stationary 
mode of convection. Effects of various parameters such as frequency and amplitude of modulation, Prandtl number, 
diffusivity ratio and solute Rayleigh number, have been analyzed on heat and mass transfer. It is found that heat and mass 
transport can be controlled by suitably adjusting the external parameters of the system. It is also found that the thermo-
rheological parameter is to destabilize the system. 

Index Terms—Temperature modulation, Heat and mass transfer, Ginzburg-Landau equation, Temperature-dependant viscosity. 

——————————      —————————— 

1 INTRODUCTION                                                                
Double diffusive convection is an important fluid 
dynamics phenomenon. It is a type of instability that 
occurs in a fluid that possesses two opposing density 
altering components with differing molecular 
diffusivity, such as heat and salt or any two solute 
concentrations. The marked difference between single 
and double diffusive systems lies in the verity that in 
double diffusive systems convection can occur even 
when the system is hydrostatically stable if the 
diffusivities of the two diffusing fields are widely 
different. The study of the double diffusive 
convection has received much attention over the years 
due to its numerous fundamental and industrial 
applications. Some examples of double diffusive 
convection can be found in oceanography Stommel 
(1956), lakes and underground water, atmospheric 
pollution, chemical processes, laboratory 
experiments, modeling of solar ponds, astrophysics, 
geophysics, geology and engineering Chen and 
Johnson (1984), magma chambers and sparks, 
formation of microstructure during the cooling of 
molten metals, fluid flows around shrouded heat-
dissipation fins, migration of moisture through air 
contained in fibrous insulations, grain storage system, 
the dispersion of contaminants through water 
saturated soil, crystal growth, solidification of binary 
mixtures, and the underground disposal of nuclear 
wastes. The early work on this problem is 
summarized in several reviews; Turner (1973-1974), 
Huppert and Turner (1981), Bhadauria (2006). 

Stommel et al. (1956) were the first to notice some 
properties of double diffusive convection with the 
discovery of the phenomenon of the salt fountain, 
which occurs when hot salty water lies above cold 
fresh water. Such a system was later analyzed by 
Stern (1960), who noted the general properties of the 
motion, now commonly known as salt fingers. The 
situation with reversed gradients has been studied by 
Veronis (1965), and stability criteria for horizontal 
boundaries of various kinds have been presented by 
Nield (1967) by means of a linear stability analysis. 
Lortz (1965) studied the effect of magnetic field on 
double diffusive convection. His object was to clarify 
some of the mathematical aspects of stability criterion 
(Malkus and Veronis (1958)) but, his analysis is silent 
about the detailed study of stability analysis. 
Considering linear gradients, Baines and Gill (1969) 
investigated the thermohaline convection in a fluid 
layer confined between two horizontal boundaries, 
which are dynamically free and conducting to both 
heat and salt. Chen (1974) considered a two-
dimensional problem of a linearly stratified salt 
solution contained between two infinite vertical 
plates, and studied the onset of cellular convection 
due to a lateral temperature gradient. Proctor (1981) 
studied the thermohaline convection in a horizontal 
fluid layer using rigid-rigid and free-free boundaries. 
Double diffusive convection in an inclined plane was 
investigated by Thangam et al. (1982) for rigid-rigid 
boundaries. Later on many other investigators 
studied this problem of double diffusive convection 
under various physical and boundary conditions. 
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Sodha and Kumar (1985) studied the stability of 
double diffusive convection in solar ponds with non-
constant temperature and salinity gradients. Lopez et 
al. (1990) have performed a linear stability analysis of 
triple diffusive convection in a horizontal fluid layer 
and found the effect of rigid-rigid boundaries on the 
onset of convection. Using linear stability analysis, 
Saunders et al. (1992) studied the effect of gravity 
modulation on thermosolutal convection in an infinite 
layer of fluid using free-free boundaries. Gobin and 
Bennacer (1994) investigated the problem of 
thermohaline convection in a vertical layer of a binary 
fluid, and studied the onset of convection. Sezai and 
Mohamad (2000) have performed a three-dimensional 
numerical study to investigate double diffusive, 
natural convection in a cubic enclosure subject to 
opposing and horizontal gradients of heat and solute 
imposed along the two vertical side walls. Ryskin et 
al. (2003) have studied thermo-diffusive convection in 
ferrofluids. Bhadauria (2006) analyzed this problem 
by considering rigid boundaries under temperature 
modulation. Starchenko (2006) discussed double 
diffusion magneto-convection for Earths type planets. 
Siddheshwar et al. (2012) performed a local non-linear 
stability analysis of Rayleigh-Be'nard magneto-
convection using Ginzburg-Landau equation. They 
showed that gravity modulation can be used to 
enhance or diminish the heat transport in stationary 
magneto-convection. Magnetohydrodynamic natural 
convection boundary layer flow of an electrically 
conducting and viscous incompressible fluid along a 
heated vertical flat plate with uniform heat and mass 
flux in the presence of strong cross magnetic field has 
been investigated by Sadia (2012). 
The classical Rayleigh-B'enard convection due to 
bottom heating is well known and highly explored 
phenomenon given by Chandrasekhar (1961) and 
Drazin and Reid (2004). The basic state temperature 
gradient across a fluid layer has to be time dependent 
and space dependent, and this can be used to regulate 
convection through an external means. Venezian 
(1969) was the first to study the effect of temperature 
modulation on thermal instability in a horizontal 
fluid layer, as a thermal analogue of Donnely (1964) 
experiments. Using perturbation method and 
considering free-free surfaces, he calculated the shift 
in the critical Rayleigh number and showed that the 
system can be stabilized or destabilized by suitably 
tuning the frequency of modulation. A similar 
problem was studied by Gershuni and Zhukhovitskii 
(1963) for a temperature profile obeying rectangular 
law. Rosenblat and Herbert (1970)} investigated 
thermal instability for low frequency temperature 

modulation while Rosenblat and Tanaka (1971), Yih, 
Li CH, (1972) and Kumar et al.(1986) studied the 
effect of thermal modulation on the onset of Rayleigh-
B'enard convection with rigid boundaries, using 
Galerkin technique and discussed the stability of the 
system using Floquet theory. The Venezian problem 
for free-free surfaces was extended by Finucane and 
Kelly (1976), Roppo et al. (1984), for weakly nonlinear 
thermal instability under temperature modulation. 
They observed that stable hexagons are produced by 
the modulation effect near the critical Rayleigh 
number. Considering various temperature profiles, 
Bhadauria (2006), Bhadauria and Bhatia (2002), 
studied temperature modulation of Rayleigh-B'enard 
convection for rigid-rigid boundaries. Malashetty and 
Swamy (2008) investigated thermal instability of a 
heated fluid layer subject to both boundary 
temperature modulation and rotation. They found 
that the symmetric modulation destabilizes the 
system at low frequencies but stabilizes at moderate 
and high frequencies. Asymmetric modulation was 
shown to stabilize convection for all frequencies. A 
weakly nonlinear study on thermal instability with 
temperature modulation using Lorenz model was 
made by Bhadauria et al. (2009) considering various 
temperature profiles. In addition to finding the effect 
of temperature modulation, they compared the 
results of various temperature profiles, in terms of the 
critical Rayleigh number. Raju and Bhattacharyya 
(2010) investigated onset of thermal instability in a 
horizontal layer of fluid with modulated boundary 
temperatures by considering rigid boundaries. 
Siddheshwar et al.(2012) stationary magneto 
convection in a Newtonian liquid under temperature 
or gravity modulation using Ginzburg-Landau 
model. Bhadauria et al. (2012), investigated a non-
linear thermal instability in a rotating viscous fluid 
layer under temperature/gravity modulation. 
Most of the above studies considered only constant 
viscosity; however, in nature and in engineering 
problems of convective flow, viscosity of many fluids 
varies with temperature. Therefore, the results drawn 
from the flow of fluids with constant viscosity are not 
applicable for the fluid that flows with temperature 
dependent viscosity, particularly at high temperature. 
The fluids that flow with variable viscosity are useful 
in chemical, bio-chemical and process industries as 
well as in physics of fluid flows, wherein the flow of 
fluids is governed by different temperatures.  
Therefore, the objective of our study is to investigate 
the effect of temperature modulation on double 
diffusive convection in a horizontal fluid layer. Here, 
we have investigated heat and mass transfer using 
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nonlinear stability analysis, and the results were 
presented graphically in terms of Nusselt, Nu and 
Sherwood number, Sh respectively. 
 
2. Governing Equations 

We consider an infinite horizontal layer of 
temperature dependent viscous fluid mixture 
subjected to a vertical gravity field, confined between 
two free-free boundaries at z=0 and z=d. To maintain 
a constant temperature difference T∆  and a constant 
solutal difference S∆ , across the layer, the layer is 
heated and salted from below. A Cartesian frame of 
reference is chosen with origin in the lower boundary 
and the z-axis vertically upwards. The schematic 
diagram of the problem (temperature modulation) is 
shown in the Fig.1 given below. The fluid layer is 
considered to be Boussinesq, and thus the basic 
governing equations are 

0,q∇⋅ =                (1) 

2
0

ˆ( ) ( ) ,   q q q p gk T q
t

ρ ρ µ∂ + ⋅∇ = −∇ + + ∇ ∂ 
  (2) 

             2( )T ,T
T q T
t

γ κ∂
+ ⋅∇ = ∇

∂
            (3) 

              2( )S ,S
S q S
t

κ∂
+ ⋅∇ = ∇

∂
             (4) 

   0 0 0[1 ( ) (S )],T ST T Sρ ρ β β= − − + −              (5) 

               0
2

0 0

( ) .
1 ( )

T
T T

µµ
ε δ

=
+ −

            (6) 

The constants and variables used in the above Eqs. (1-
6) have their usual meanings, and are given in the 
Nomenclature. The thermo-rheological relationship in 
Eq.[6] is guided by Nield (1996). 
3. Mathematical Formulation 

Since an uniform concentration gradient
S

d
∆

, has 

been maintained between the walls of the liquid layer, 
therefore the boundary conditions on S are 
 

0

0

             at z=0
                       at z=d
S S S

S
= + ∆
=

                                 (7)  

Also the externally imposed surface temperature 
conditions are 

( )
( )

2
0

2
0

T T 1 cos      at z=0

  T cos         at z=d

T t

T t

ε δ ω

ε δ ω θ

 = + ∆ + 
= + ∆ +

      (8) 

Here δ represents the amplitude of modulation and 
ε  (to be defined later in the next section) indicates 
the smallness of the amplitude, T∆ is the 
temperature difference, ω is the modulation 
frequency and θ is the phase angle. The basic state of 
liquid is quiescent and given by 

(z),  = (z,t),  p=p ( , ),  , S=S ( ),  T=T ( , )b b b b bq q z t z z tρ ρ= (9) 

                              
2

2 0bd S
dz

= ,           (10) 

                         
2

2 ,b b
T

T T
t z

κ∂ ∂
=

∂ ∂
                          (11) 

                             b
b

p g
z

ρ∂
= −

∂
                         (12) 

    0 0 0[1 ( ) (S )],b T b S bT T Sρ ρ β β= − − + −        (13) 

The solution of the Eq.(10) subject to the boundary 
conditions Eq.( 7) is given by 

0 1b
zS S S
d

 = + ∆ − 
 

,                                           (14) 

Also the Eq.(11) has been solved subjected to the 
thermal boundary conditions Eq.(8), we write 

where 0(z) 1s
zT T T
d

 = + ∆ − 
 

,                           (15) 

2
1 3T (z, t) T ( ) Re{T (z, t)},b s z ε δ= +                 (16) 

3T (z, t) [a( ) a( ) ] ,
z z

i td de e e
λ λ

ωλ λ
− −= + −             (17) 

a( )
ie eT

e e

θ λ

λ λλ
− −

− −

−
= ∆

−
and

2
2

T

i dωλ
κ

−
= .          (18) 

In the above equations, T ( )s z is the steady 

temperature field and 3T  is the oscillating part of Tb

, while Re stands for the real part. We assume finite 
amplitude perturbations to the basic state in the form 

+ ',  = + ',  p=p +p', S=S +S',T=T +T'b b b b bq q q ρ ρ ρ= (19) 

Substituting Eq.(19) in the set of Eqs.(1-6), we get the 
following equations 

' 0,q∇⋅ =              (20) 

2
0

' ˆ( '. ) ' p'= 'g ( ) ',   q q q k T q
t

ρ ρ µ∂ + ∇ +∇ + ∇ ∂ 
(21) 

     2T' ( ' )T'+w' T',b
T

Tq
t z

γ κ∂∂
+ ⋅∇ = ∇

∂ ∂
           (22) 

        2' ( ' )S'+w' S',b
S

SS q
t z

φ κ∂∂
+ ⋅∇ = ∇

∂ ∂
        (23) 

                    0 -( T' ')T S Sρ β β= − .            (24) 
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We consider only two-dimensional disturbances in 
our study, and hence the stream functionψ is 

introduced as ' 'u , w
z x
ψ ψ∂ ∂

= = −
∂ ∂

.                   (25) 

By operating curl twice on Eq.(20), we eliminate p'
from it, and use Eq.(23) to eliminate 'ρ , and then 
render the resulting equation and Eqs.(20-24), and 
(22) dimensionless using the following 

transformations
2

* * * *( , , ) ( , y , z ),  t =
T

dx y z d x t
κ

′ ′ ′ ′=

* ' 'Tq q
d
κ

= *S =  SS′ ∆ , * * T = T TTψ κ ψ ′= ∆

and *
2
T

d
κω ω= . We obtain the non-dimensional 

governing equations in the form (on dropping the 
asterisks for simplicity) 

2 2 2
41 1 ( , ) (T) ,

Pr Pr (x, z) T S
T SRa Ra

t x z z x
ψ ψ ψ µ ψµ ψ∂∇ ∂ ∇ ∂ ∂ ∂∇ ∂

− + = ∇ + +
∂ ∂ ∂ ∂ ∂ ∂

 
                                                                                         (26) 

2 T ( ,T)T
(x, z)

bT
x z t
ψ ψ∂∂ ∂ ∂

− −∇ = − +
∂ ∂ ∂ ∂

               (27) 

       21 ( ,S)
(x, z)

SS
x Le t
ψ ψ∂ ∂ ∂

− ∇ = − +
∂ ∂ ∂

          (28) 

where 

2

1(T)
1 VT

µ
ε

=
+

, 2ε is a small quantity which 

indicates that the viscosity variation with temperature 
is weak, V is the temperature dependent viscosity. 
The non-dimensionalized parameters in the above 

equations are: Pr
T

ν
κ

= is the Prandtl number,  

3
T

T
T

g TKdRa β
νκ
∆

= is the thermal Rayleigh number, 

3
S

S
T

g TKdRa β
νκ
∆

= is the solute Rayleigh number,  

and Le  T

S

κ
κ

= is the Lewis number. 

The non-dimensional form of temperature gradient in 
Eq.(27) shows that the basic state solution influences 

the stability problem through the factor 
Tb

z
∂
∂

,which 

is given by 

2
2

T 1 [ (z, t)],b f
z

ε δ∂
= − +

∂
                                        (29) 

where 2 Re[ ],i tf fe ω−=                                               (30) 

[a( ) a( ) ],z zf e eλ λλ λ −= + −   

a( )
ie e

e e

θ λ

λ λλ λ
− −

− −

−
=

−
and 2 (1 )

2
i ωλ = − . 

To keep the time variation slow, we have re-scaled 

the time‘t’ by using the time scale τ= 2ε t. Now, to 
study the stationary mode of double-diffusive 
convection, we write the above non-linear system 
Eqs.(25)-(26) into the matrix form 

2 2 2 2
4

2 2 2
2

2 2

1 ( , )
Pr Pr (x, z)

( , )0
(x, z)

1 ( ,S)0
(x, z)

T

Le

Ra Ras t z zx x
T TT f

x x
S

S
x

ε ψ ψ ψ µ ψ
µ

ψ
ψ ψε ε δ

τ
ψ ε

τ

 ∂∇ ∂ ∇ ∂ ∂∇ ∂ ∂ − + +− ∇ −    ∂ ∂ ∂ ∂∂ ∂     
 ∂ ∂ ∂ ∂   −∇ = − +    ∂ ∂ ∂ ∂     ∂  ∂ ∂ − ∇ −  ∂ ∂ ∂   

 

              (31)  

We solve Eq.(31) by using (T )bµ µ= guided by 

Nield (1996) and considering free-free, isothermal and 
isohaline boundary conditions as given bellow 

2 0,      0   on    z=1T Sψ ψ= ∇ = = =          (32) 
2 0,      1   on    z=0.T Sψ ψ= ∇ = = =          (33) 

3 Heat and mass transport for stationary 
instability  
To solve the system Eq.(31) we introduce the 
following asymptotic expansion 

2
0 2R ..T ca Ra Rε= + + .                          (34)                                                                                            

2 3
1 2 2 ..ψ εψ ε ψ ε ψ= + + + .                   (35)                                                                                      

2 3
1 2 3 ..T T T Tε ε ε= + + +                                      (36)                                                                                             

2 3
1 2 3 ..S S S Sε ε ε= + + +                                     (37)               

where 0cRa  is the critical value of the Rayleigh 

number at which the onset of convection takes place 
in the absence of temperature modulation. 
At the lowest order, we have 

4
0

1
2

1

1
2

0
0 0

010

c

Le

Ra Ras
x x

T
x

S

x

ψ

 ∂ ∂
−∇ − ∂ ∂     
∂     −∇ =     ∂

        ∂ − ∇
 ∂ 

s               (38) 

The solution of the lowest order system subject to the 
boundary conditions Eq.(32-33), is 
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1 sin(k x)sin( z)cAψ π= ,                                                                                                       

1 2

kT Acos(k x)sin( z)c
c π

α
= − ,             

1 2 Acos(k x)sin( z)c
c

k LeS π
α

= − ,                          (39)                                                 

where 2 2 2kcα π= + . The system (38) gives us the 

critical value of the Rayleigh number and the 
corresponding wave number for the onset of 
stationary convection 

                   
6 2

0 2
c

c
c

Lek RasRa
k

α +
= ,                           (40) 

                                  
2ck π

= ,                                   (41) 

which is the classical results obtained by 
Chandrasekhar (1961). 
At the second order, we have 

4
0

2 21
2

2 22

2 23
2

0

10

c

Le

Ra Ras
x x R

T R
x

S R

x

ψ

 ∂ ∂
−∇ − ∂ ∂     
∂     −∇ =     ∂

        ∂ − ∇
 ∂ 

        (42) 

 where 
                  21 0R =                                                       (43) 

                  1 1 1 1
22

T TR
x z z x
ψ ψ∂ ∂ ∂ ∂

= −
∂ ∂ ∂ ∂

                 (44) 

                  1 1 1 1
23

S SR
x z z x
ψ ψ∂ ∂ ∂ ∂

= −
∂ ∂ ∂ ∂

                 (45) 

The second order solutions subjected to the boundary 
conditions Eq.(32-33), is obtained as  where 

2 0ψ =                                                                             (46) 
2 2

2 2

k sin(2 z)
8

c AT π
πα

= − ,                                           (47)                      

2 2 2

2 2

k sin(2 z)
8
c Le AS π
πα

= − .                                (48)           

The horizontally-averaged Nusselt number, Nu, and 
Sherwood number, Sh, for the stationary double-
diffusive convection (the mode considered in this 
problem) are given by             

2
k

2

0

0
2
k

0

0

k
2

( ) 1

k
2

c

c

c

z

c b

z

T dx
z

Nu

T dx
z

π

π

π

τ

π

=

=

 
 ∂
 ∂ 
 = +
 
 ∂
 ∂ 
 

∫

∫

        

2
k

2
0

0
2
k

0

0

k (1 z S )
2

Sh( ) 1

k (1 z)
2

c

c

c

z

c

z

dx

dx

π

π

π

τ

π

=

=

 
 

− + 
 
 = +
 
 

− 
 
 

∫

∫

            

              or 
2 2

2

ANu( ) 1
4
ckτ
α

= +                 (49) 

and        
2 2 2

2

ASh( ) 1
4

cLe kτ
α

= +                              (50) 

At the third order, we have 
4

0

3 31
2

3 32

3 33
2

0

10

c

Le

Ra Ras
x x R

T R
x

S R

x

ψ

 ∂ ∂
−∇ − ∂ ∂     
∂     −∇ =     ∂

        ∂ − ∇
 ∂ 

           (51) 

where  
2 2 1

31 1 1 0 2
1 (2Ra  )
Pr b c b

TR VT V T R
x

ψ ψ
τ

∂∂
= − ∇ − ∇ − +

∂ ∂
 

 21
12Ras b

SVT V
x z

ψ∂ ∂
+ + ∇

∂ ∂
                                                      

1 2 1 1
32 2

T TR f
z x x

ψ ψδ
τ

∂ ∂ ∂ ∂
= − + +

∂ ∂ ∂ ∂
,                  

1 2 1
33

S SR
z x

ψ
τ

∂ ∂ ∂
= − +

∂ ∂ ∂
.                                         

Using the first and second order solutions we can 
easily obtain the expression for 31R , 32R and 33R . 

Now applying solvability condition for the existence 
of third order solution, we obtain the Ginzburg-
Landau equation for stationary convection with time 
periodic coefficients in the form            

3
1 2 3

( ) A( ) A( ) 0AQ Q Qτ τ τ
τ

∂
= − =

∂
                (52)   

2 2 22
0

1 4 4Pr
c c cRa k Le RaskQ α

α α
 

= + + 
 

 

2 4

2 2 0 1 02 22c
c c

c

k VQ R Ra I VRa RasVLe
k
αδ

α
 

= − + − − 
 

 
4

3
3 048

c
c

kQ Ra RasLe
α

 = −  and 

1
2

1 2
0

( ) sin ( ) .
z

I f z dzτ π
=

= ∫              
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It may be difficult to get the analytic solution of the 
above Ginzburg-Landau equation (52) due to its non-
autonomous nature, therefore, it has been solved 
numerically using the inbuilt function NDSolve of 
Mathmatica 8.0, subject to the suitable initial 
condition A(0) = a0, where a0 is the chosen initial 
amplitude of convection. In our calculations we may 
assume 2 0cR Ra= , to keep the parameters to the 

minimum. 
4 Results and discussion 
 We consider the effect of temperature modulation on 
double diffusive convection in a fluid layer that arises 
when heat and salt make opposing contributions and 
for T Sκ κ≠ . Direct mode is preferred in 

unmodulated case when 1S

T

κ
κ

<  and Hopf mode 

otherwise. We concentrate on the modulated problem 
for only the direct mode. The focus in the paper is 
essentially on the effect of modulation on heat and 
mass transports. In this problem the considered the 
Ginzburg-Landau equation is nonautonomous. To 
discuss the results of temperature modulation, we 
consider the following three types of temperature 
modulation 
• In-phase modulation IPM 0θ = , 
• Out-of-phase modulation OPM θ π=  and 
• Modulation of only the lower boundary MOLB 

iθ = − ∞ . 
It is important that a nonlinear study is made if one 
wants to quantify heat and mass transports which the 
linear stability theory is unable to do so. External 
regulation of convection is important in the study of 
double diffusive convection in a fluid layer. The 
objective of the paper is to consider such candidates,  
namely temperature modulation for either enhancing 
or inhibiting convective heat transport as is required 
by a real application. The parameters that arise in the 
problem are Pr, V, Le, Ras, θ , δ, ω and these 
influence the convective heat and mass transports. 
The first four parameters relate to the fluid and the 
structure of the porous medium, and the last three  
concern the external mechanisms of controlling 
convection. Positive values of Ras are considered and 
in such a case, one gets positive values of TRa  , and 

these signify the assumption of a situation in which 
we have cool fresh water overlying warm salty water.  
Here small amplitude modulation is considered, the 
value of δ lies around 0.1. Further, the modulation of 
the boundary temperature assumed to be of low 
frequency. At low range of frequencies the effect of  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
frequency on onset of convection as well as on heat 
transport is minimal. This assumption is required in 
order to ensure that the system does not pick up 
oscillatory convective mode at onset due to 
modulation in a situation that is conducive otherwise 
to stationary mode. It is important at this stage to 
consider the effect of Pr, Le, Ras, δ and ω on the onset  
of convection.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This has been reported by many investigators earlier 
who found that: 
• [ TRa ]Le=0<[ TRa ]Le≠0 

IN PHASE MODULATION 

 

  

 
         Fig .2:Nu versus τ for (a) Pr (b) V (c) Le (d) Ras (e) δ,ω. 
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 Fig .3:Nu versus τ  for (a) Pr (b) V (c) Le (d) Ras (e) δ(f) ω 
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• [ TRa ]Ras=0<[ TRa ]Ras≠0 

• [ TRa ]Pr=0<[ TRa ]Pr≠0 

• and the effect of thermo-rheological parameter 
V also seen here 

•  [ TRa ]V=0<[ TRa ]V≠0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We fix the values of parameters as 
Pr=1.0,V=0.2,Le=1.4,Ras=20,δ=0.1 and ω=2.0 and by 
varying individual parameter, we plot the graphs Nu 
versus time. The effect of modulation on heat and 
mass transports is shown in the Figs. (2)-(7). Figs.(2a)-
(2d) concerning IPM shows that Nu increases with 
individual and collective increases in Prandtl number 
Pr, Temperature dependant viscosity V, Lewis 
number Le, Solutal Rayleigh number Ras and hence 
advances the heat transport. But Fig.(2e) shows no 
effect in the case of amplitude and frequency of 
modulation.  The Nu versus τ curves start with Nu=1, 
showing the conduction state. As time progresses the 
value of Nu increases, thus showing that convection 
is taking place and then finally the curves of Nu level 
off when time is comparatively large. This result is 
seen when the amplitude of temperature modulation 
is quite small. The above pattern in the variation of 
Pr, V, Le, Ras is also seen in the case of OPM (see  
Figs.(3a)-(3d)) and LBMO (see Figs.(4a)-(4d)). In the 
case, OPM and LBMO, however, the Nu versus τ 
curves are oscillatory. While in the case of OPM 
Fig.(3e) shows that the effect of δ is to increase the 
heat transport and the Fig. (3f) shows that the effect of 

ω is to decrease the heat transport. It is obvious from 
the figures that: 
[Nu]δ =0.1 <[Nu]δ=0.2<[Nu]δ=0.3 
[Nu]ω=100 <[Nu] ω=40<[Nu] ω=20<[Nu] ω=1 
Further from Fig. (4e)-(4f), we find the similar effect in 
the case of LBMO. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From figures (5a)-(5e), (6a)-(6f) and (7a)-(7f) shows the 
effect of Sherwood number variation with time is 
similar to Nu variation with time.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ONLY LOWER BOUNDARY MODULATION 

  

  

  
    Fig .4:Nu versus τ for (a) Pr (b) V (c) Le (d) Ras (e) δ (f) ω    
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  Fig .5:Sh versus τ for (a) Pr (b) V (c) Le (d) Ras (e) ,δ ω  
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  Fig .6:Sh versusτ  for (a) Pr (b) V (c) Le (d) Ras (e )δ (f) ω    
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The general results on Sh, in three types of 
modulations is similar to those on Nu. The effect of δ 
Figs. (6e)-(7e) and ω Figs. (6f)-(7f) is same as Nu in the 
case of OPM and LBMO. It may be noted that in all 
the above figures only positive values of Ras are  
considered meaning that only the case of heating 
from below and salting from below is considered as 
this favors stationary convection. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5 Conclusions 
 The effect of temperature modulation on weak 
nonlinear double diffusive convection in a 
temperature dependant viscous fluid layer is studied 
using Gingburg-Landau equation. Onset criteria for 
double diffusive convection for temperature 
modulation is derived analytically. The following 
conclusions are drawn 
1. Effect of IPM is negligible on heat and mass 

transport in the system. 
2. In the case of IPM, the effect of δ and ω are also 

found to be negligible on heat and mass 
transport. 

3. In the case of IPM, the values of Nu and Sh 
increase steadily for intermediate small values of 
time τ, however become constant when τ is large. 

4. Effect of increasing Pr, V, Le, Ras is found to 
increase Nu and Sh thus increasing heat and 
mass transfer for all three types of modulations. 

5. Effect of increasing δ is to increase the value of 
Nu and Sh for the case of OPM and LBMO, hence 
heat and mass transfer. 

6. Effect of increasing ω is to decrease the value of 
Nu and Sh for the case of {OPM} and {LBMO}, 
hence heat and mass transfer. 

7. In the cases of OPM and LBMO, the natures of 
Nu and Sh remains oscillatory. 

8. Initially when τ is small, the values of Nusselt 
and Sherwood numbers start with 1, 
corresponding to the conduction state. However 
τ increases, Nu and Sh also increase, thus 
increasing the heat and mass transfer. 

9. The values of Nu and Sh for LBMO are greater 
than those in IPM but smaller than those in OPM. 

The thermo-rheological model of Nield (1996), gives 
physically acceptable results, namely, the 
destabilizing effect of variable viscosity on Rayleigh-
B'enard convection and thereby an enhanced heat 
transport. 
The results of this work can be summarized as 
follows from the Figs. (2-4). 

1. [Nu]Pr=0.5 <[Nu]Pr=1.0<[Nu]Pr=1.5 
2. [Nu]V=0.2 <[Nu]V=0.3<[Nu]V=0.4 
3. [Nu]Le=1.3 <[Nu]Le=1.6<[Nu]Le=1.9 
4. [Nu]Ras=20 <[Nu]Ras=40<[Nu]Ras=60 
5. [Nu]δ =0.1 <[Nu]δ=0.2<[Nu]δ=0.3 
6. [Nu]ω=100 <[Nu] ω=40<[Nu] ω=20<[Nu] ω=1  

these results are similarly effect for Sh from 
Figs. (5-7) 
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